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The linear relaxation time (LRT) associated with steady-state correlation func- 
tions is studied for Langevin equations with non-Gaussian noises: dichotomous 
Markov noise and Poissonian white shot noise. Exact results for arbitrary 
models are obtained and compared with results for Gaussian noises. Some 
general features of LRTs are discussed. The concept of dynamic effective diffu- 
sion is introduced and the existence of an optimal effective Fokker-Planck 
approximation is discussed. Explicit examples for prototype models are 
presented and briefly compared with the analogs for Gaussian noises. 
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1. I N T R O D U C T I O N  

Stochas t ic  differential  equa t ions  are widely used in the mode l ing  of a great  
var ie ty  of  nonequ i l ib r ium systems. (1~4) An  interest ing aspect  from the po in t  
of  view of the dynamics  is the s tudy of  f luctuat ions  in the s teady state. In  
the f r amework  of systems descr ibed  by  Langevin- l ike  equat ions  of the 
general  form 

= v(x) + g(x) (1.1) 

where q(t) s tands  for a s tochast ic  force or  noise, the dynamics  of f luctua- 
t ions in the s teady state is well charac te r ized  by the au toco r r e l a t i on  func- 
t ion of  the var iable  x. (3'5 8) This  quan t i t y  will have in general  a complex  
dependence  on bo th  the de terminis t ic  forces v(x)  and on the s ta t is t ical  
p roper t ies  of  the s tochast ic  terms g(x )  q(t). The mos t  usual  a s sumpt ion  is 
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to consider that q(t) is a Gaussian white process. This is an idealization 
which has been very useful, but which may be too restrictive in the descrip- 
tion of some real systems, (3'4) so other more general noises, non-Gaussian 
and/or nonwhite, should be taken into account. Nevertheless, for nonlinear 
problems no exact results for correlation functions are usually available, 
even for Gaussian white noise (GWN), so standard approximate techni- 
ques have been developed. (5-12) 

Some recent results (lw12) concerning the so-called linear relaxation 
time (LRT) of correlation functions (defined as the time integral of the 
normalized correlation function) for GWN problems have given to this 
quantity a renewed interest. Here we generalize some of those techniques 
and obtain exact results concerning other types of noise. 

The quantity we focus on in this paper is the so-called linear relaxa- 
tion time (13'14) (LRT) (which has also been referred to as the relaxation 
time, the correlation time, the mean relaxation time, etc.). This quantity 
has often been taken into account in the literature as a global characteriza- 
tion of the decay of correlation functions (8'13'~4~ and it has been interpreted 
as a typical time scale of the relaxation of fluctuations in the steady state. 
The qualificative of "linear" is to distinguish it from its counterpart, 
the nonlinear relaxation time, which is the analog for the transient 
evolution.O4 16) The former makes reference to an eventually "linear" 
relaxation of small fluctuations around the steady state, in opposition to 
the relaxation of an initial condition which, being in general far form the 
steady state, involves nonlinear dynamics. 

The LRT of a steady-state correlation function of the general form 

C~2(s)= lim ( f a ( x ( t + s ) ) f z ( x ( t ) ) )  - ( f l ) s t  ( fz )s ,  (1.2) 

is defined by 

1 fo ~ T~2 = C~2(0) C12(s) ds (1.3) 

The idea of the definition (1.3) is that, in an expansion of the form 

C12(s) ~ ~ ake-"k~ (1.4) 
k 

it can be seen as an average with the weights a k of the relaxation times/~-1 
of the exponentials (mean relaxation time ~l~ ). In this sense, this would 
be the complementary definition of that of the so-called effective 
eigenvalue ~17) which corresponds, in an expansion of the form (1.4), to the 
average of the eigenvalues/~k. Another interpretation of both characteristic 
times was pointed out by Nadler and Schulten (~~ in a more general 
framework as the coefficients of the lowest orders in low-frequency and 
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high-frequency expansions, respectively. Of concern to us.here, their main 
result is that the LRT (and the so-called low-frequency moments) in the 
case of GWN can be exactly calculated without the explicit knowledge of 
the correlation function. The same result for the LRT was obtained by 
Jung and Risken. (12) 

In this paper we present a generalization of the method followed by 
Jung and Risken (12) for the calculation of the LRT, which makes it possible 
to obtain the hierarchy of low-frequency moments of Nadler and 
Schulten. (1~ The problem is set up in a simple mathematical framework 
which applies also to noises other than Gaussian and white. Our concern 
here will be essentially on the lowest order, the LRT. An approximate 
extension to systems driven by Gaussian colored noise was developed in 
ref. 18. In this paper we apply the theory to some exactly solvable cases 
involving non-Gaussian noises. 

The general solution of the LRT associated with a correlation function 
(1.2) defined by an equation (1.1) and a given noise q(t) consists of a func- 
tional of the quantities v(x), g(x), fl(x), fz(x), and the parameters of the 
noise. Given that in general the correlation function is not exactly known, 
the exact knowledge of the LRT (and the successive low-frequency 
moments) can be interesting for different reasons. First, from the analysis 
of the functional form of the LRT one can obtain general information 
about the specific features of dynamics under the influence of any particular 
noise, as we will see, for instance, in the discussion on the existence of effec- 
tive diffusion functions in Section 3.1. Second, the analysis of the solution 
for particular choices of v(x), g(x), fl(x), and f2(x) for prototype models 
can be useful as a dynamical characterization of different physical situa- 
tions. We include a brief discussion of some illustrative examples in 
Section 4. An explicit evaluation of the LRT can also be useful as a test 
for the different approximate methods in particular situations. (19) Finally 
an interesting point is that the information contained in the LRT (and the 
low-frequency moments in general) can be used in a systematic way in 
order to get explicit approximations of the correlation function itself as 
proposed in refs. 10, 11, and 19. 

2. E X A C T  R E S U L T S  

2.1. Formula t ion  of  the  Problem 

In this section we generalize the method followed in ref. 12 for the 
calculation of the LRT of a steady-state correlation function in a GWN 
single-variable problem. The generalized form applies to other noises and 
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multivariable systems and reformulates in a simple way the problem of the 
calculation of the low-frequency moments of refs. t0, 11, and 19. The start- 
ing point is the evolution equation of the steady-state two-time ( t - t ' =  s) 
joint probability density Pst(x, x'; s) as the quantity which generates all the 
steady-state correlation functions, 

'~S Pst(X' x'; s) = L(x) Pst(X, x'; s) (2.1) 

In Eq. (2.1) it is implicitly assumed that the process x(t) is Markovian. 
Nevertheless, the formalism is also valid for multivariable systems, so 
non-Markovian processes can be incorporated when reformulated in its 
equivalent multivariable Markovian formulation. 

According to (2.1) and taking into account the initial condition 

Pst(X, x'; O) = 6(x-x') Pst(X') (2.2) 

one can write the correlation function C12(S) as 

Cx2(s) = f] dx fx(x) eL(X)s[fz(x) -- ( f2)~t]  P~t(x) (2.3) 

where (a, b) is the natural domain of the process x(t). We define now the 
quantity 

W(x, s)= eg(x)SEfz(x ) - ( /2 ) s t ]  Pst(x) (2.4) 

and its Laplace transform 

p(x, w ) = f ~  e-wsW(x' s) ds (2.5) 

Notice that W(x, s) obeys, from its definition, the equation 

g-~ W(x, s) = L(x) W(x, s) (2.6) 

so, taking into account that W(x, ~ ) must vanish and W(x, 0) = [ f 2 ( x ) -  
( f2 ) s t ]  P~t(x), the Laplace transform of (2.6) reads 

- [ fz(x) - ( f z ) s t ]  Pst(x) = EL(x) - w] p(x, w) (2.7) 
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On the other hand, the Laplace transform of the C~2(s) using (2.5) will 
be given by 

dlz(W)= fl(x)  p(x, w) dx (2.8) 

where we have commuted the order of the integrations. 
Thus, the problem of determining the (~t2(w) has been formulated in 

terms of the differential equation (2.7). If it is possible to obtain p(x, w) 
from (2.7), and this is the key point of the method, we will have reduced 
the problem to quadrature by simply inserting the p(x, w) into (2.8). 

Provided a direct solution of (2.7) is not generally possible, in order 
to get a low-frequency characterization of C12(w) we will assume an expan- 
sion of p(x, w) in powers of w of the form 

p(x,  w) = po(X) + Wpl(X) + wgp2(x) + . . .  (2.9) 

so that Eq. (2.7) reduces to the infinite set of equations 

L(x) po(x)= - [ - f 2 ( x ) -  (f2)~t] Pst(x) 

L(x) p~(x) = p, ~(x); n/> 1 

(2.10) 

(2.11) 

The successive orders can be solved recursively provided the lowest order, 
which corresponds to the LRT, is solvable. Assuming the corresponding w 
expansion of the C12(w) 

f,(O) F~ (2)u,2 ~. 
"~12~ W]= ~ 1 2  _L___ (~'~12--(1)u'T" ~'12 '~ " " ' "  (2.12) 

the coefficients C}~ ) (essentially the low-frequency moments of refs. 10 and 
11), and in particular the LRT T12, will be given by 

T12 = C~~ C 1 2 ( 0 )  = ( L f 2 ) 1 2  - ( J C l ) s t  ( / 2 ) s t  ( 2 . ! 3 )  

';o ;2 C~) = ( -1)n ~.. snC12(s) ds= f~(x) p~(x)dx (2.14) 

In our formulation, there are no strong restrictions on the form of 
L(x), so, in principle, a wide range of different possibilities can be admitted. 
The practical usefulness of the method in a particular case lies then in two 
steps: the knowledge of the L(x) and the solvability of Eq. (2.10). Notice, 
however, that Eq. (2.10) is the one obeyed by the stationary probability 
density Pst(X) of the system except for an inhomogeneous term. In this case 
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it has to be solved with the usual condition of vanishing current at the 
natural boundaries and subject to the additional conditions 

b 
fa p.(x) dx=O; n~O (2.15) 

which arise from the fact that the integral over the domain (a, b) is con- 
served under the evolution generated by the operator exp[L(x)s], so that 

f]W(x, s) = 0, (2.16) dx Vs 

From a practical point of view, this implies that for one-variable 
problems (2.10) will be exactly solvable in those cases for which the Pst(x) 
is known, and, similarly, if Pst(X) is only approximately known, as for 
Gaussian colored noise, the LRT will be solvable in the same 
approximation.(18/ 

In this paper we present some exactly solvable cases by means of this 
procedure, including both Markovian and non-Markovian cases. For 
further reference we include here the general solution for the GWN 
case. (m-12) The Stratonovich interpretation of (1.1) leads to a Fokker-  
Planck operator of the form 

L ( x ) =  --~x V(X) + D ~--T g(x)-~x g(X ) (2.17) 

and a straightforward application of the method to it gives 

l f~ F I ( X  ) g 2 ( x )  

TI2 = ( f l  f2 )st - ( f l ) s t  ( f2)st  - -  Dg2(x) Pst(x) 

Fi(x) =- - [f i(x ' )  - -  ( f t ) s t ]  Pst(xt) d x '  

as the solution for GWN in the most general case. 

dx (2.18a) 

(2.18b) 

2.2. D i c h o t o m o u s  M a r k o v  Noise ( D M N )  

This section is devoted to the case in which the noise r/(t) in (1.1) is 
a dichotomous Markov process (DMN), 14'2~22) which takes the values A 
and A'. We denote by ~ and #' the respecti.ve transition rates between these 
two states of the noise. The condition of vanishing mean value reads 

A A' 
~ +  ~-7= 0 (2.19) 
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The noise is thus characterized by three independent parameters. The 
correlation function of the noise is 

r 

(~+  #,)2 ( A -  A')z exp[ - ( / z  + #  ') I t - t* l ]  (2.20) 

It has a finite correlation time ~ = (# + #') 1= A-l ,  and hence the process 
x( t )  defined by (1.1) is non-Markovian. 

An important particular case is the symmetric dichotomous noise 
(SDMN), which takes the values _+A and with # = # ' .  This case has a 
GWN limit when r--* 0 in such a way that AZz = D = const. 

Although the process x( t )  is non-Markovian, the procedure of Sec- 
tion 2.1 will apply to the augmented two-variable problem (x, r/), which is 
then Markovian. The discrete character of the noise variable is crucial for 
our purposes because it permits the formulation of the problem in terms of 
a system of ordinary differential equations [instead of a partial differential 
equation, as would be the case for an Ornstein-Uhlenbeck noise (OUN) 
problem]. 

By choosing the appropriate auxiliary quantities as the second 
components, (21) we can define the vector Pst(X, xe;s) which obeys the 
equation 

P(x, x'; s) = s  P,t(x, x'; s) (2.21) 

where the operator s  is the matrix 

T tx,J -Ux v(x)+ J + 3 '  q 

A - 3 ' O  
# - #' -~ 2 ~x g(x)  

, 8 v A + z l '  

(2.22) 

and the quantity Pst(X, x'; s) in which we are interested is the first compo- 
I ,  nent of the vector P~t(x, x ,  s). In this formulation we will also have a 

vector correlation function 

~b 
C12(s) = J a  d x f ~ ( x ) { e x p [ s  ( f2)s t ]  Pst(x) dx (2.23) 

whose first component is the nonnormalized correlation function associated 
with the non-Markovian process x( t )  defined by (1.2). 
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The same formal scheme as in Section 2.1 can be followed now. The 
equation to solve takes the form 

s po(X)= - [ f 2 ( x ) -  ( f2)s t ]  Pst(X) (2.24) 

and we are interested in the first component of po(x). After some algebra 
and using relations between the two components of Pst(X), (2~ the solution 
in the case f l  = f2 '= f can be arranged as 

1 ~b F2(x) 
- ~  J~ D~ff(x) P~t(x) 

x A+ v ( x ) + ~ g ( x )  -~xln g(x) ) 

where 

T =  

F(x) = - [ f ( x ' ) -  ( f ) s t ]  Pst(x,) dx' (2.26) 

and D~(x) is what we will call the static effective diffusion (see Sec- 
tion 3.1 ), 

D~fr(x ) = - I v ( x )  + Ag(x)] [v(x) + A'g(x)-] (2.27) 

This form is very convenient, since taking into account the explicit 
form of the Psi(x) 

x v X ~ g(x) f , r ( ) , ,~ 
Pst(x) oc ~ exp ~ A / ~  ax ~ (2.28) 

r, ad x ) ( J D e~( x ) J 

Eq. (2.25) reduces to 

v(x) 3 + - A f'b F2(x) { 1 +  I v ( x ) + - - ~ g ( x ) ] } d x  (2.29) 
1'= ~ jo DSar-~ -~st ( x ) D~(  x ) 

This result is exact and refers to the general LRT problem of the process 
x(t), which is non-Markovian. Equation (2.29) may be written in a more 
compact form as 

1 fb F2(X) 
T =  dx (2.30) 

Ja Daf(x) est(x) 

The formal comparison with the GWN solution (2.18) suggests the defini- 
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tion of what we will call a dynamic effective diffusion De~r(x), that is, the 
function appearing instead of Dg2(x), 

1 [v(x) + Ag(x)]2[v(x) + A'g(x)] 2 
D eg( x ) = 

A 33'g2(x) + �89 + A') g(x) v(x) 

~_ I-v(x) + Ag(x)] l-v(x) + ~'g(x)] 
= DS~(x) AA'g~(x) + �89 + A') g(x) v(x) 

(2.31) 

(2.32) 

We will comment  on this point in Section 3.1. 

2.3. Poissonian White Shot Noise (WSN)  

In this section we study processes driven by Poissonian white shot 
noise. (23'24~ This is a process defined as the sum 

O(t) = ~ wi 6 ( t -  t~) (2.33) 
i 

where ti are random time points distributed with a given average time 
spacing 2 -1, so that the probabili ty to have n such time points in a time 
interval of duration t is given by the Poisson distribution 

1 
Pn(t) = ~  (2t)"e -) ' '  (2.34) 

The 6 pulses are weighted by wi, which are random independent 
variables with a probability density q~(w). Here we will consider the case in 
which ~p(w) is exponentially distributed as 

1 
q~(w) = - -  e w/w~ Wo > 0 (2.35) 

Wo 

where O(w) stands for the Heaviside function. The process 0(t) is white, but 
it is non-Gaussian, since its cumulants are all nonvanishing, though 
6-correlated. (23'24) In order to have zero mean value, we redefine it as 

q(t) = O(t) - 2Wo (2.36) 

Now the process r/(t) has a Gaussian limit given by w0 ~ 0, 2 ~ ~ ,  
2w 2 = D = const. 

The probability density P(x, t) of the process x(t) defined by the 
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Langevin equation (1.1) with this WSN (in Stratonovich interpretation) 
obeys the equation (23) 

0 
55 P(x, t) 

g(x)] --2Wo 0-~ g(x) ={--~x[V(X)--~Wo [1 1-11 -- Wo -~x g(x)  P(x, t) 

(2.3.7) 

The WSN itself can also be obtained from the asymmetric D M N  
taking the limits #' ~ o% A' ~ o% with A'/#' = Wo = const. The parameter/~ 
then plays the role of 2, and A becomes -2Wo, which is the constant value 
that compensates in the average the 6 pulses. The general solution of the 
LRT can then be obtained from that of the D M N  in this limit. 
Nevertheless, as a more explicit illustration of the method of Section 2.1, 
we apply it in detail to this case with the operator of (2.37) in the 
Appendix. 

The general result (A.10) can also be written in the compact form 
(2.30), which defines the corresponding dynamic effective diffusion as 

[,~Wo g ( x )  - v(x)] 2 
Deft(x ) = 2w o g(x) (2.38) 

22Wo g(x) - v(x) 

or, in terms of the parameters D = 2w 2 and Wo, 

Deft(x) = DgZ(x) [1 - (wo/D) v(x)/g(x) ] 2 (2.39) 
1--- (~o/2D i ~ 

3. S O M E  GENERAL R E M A R K S  ON LRTs 

3.1. Dynamic  Effect ive Di f fusion Function 

An interesting aspect in the discussion of the results of Section 2 is the 
occurrence of what we called the dynamic effective diffusion. That function 
arises when considering the formal analogy of the general solution of the 
LRT for any autocorrelation function in the exactly solved cases. 

For  GWN, the general solution for a generic correlation function can 
be seen essentially as a functional of two objects: the steady-state probabil- 
ity density P~t(x) and the diffusion function Dg2(x). It is a well-known fact 
that the dynamics associated with a given stationary solution Pst(x)  is not 
unique, so the explicit appearance of the diffusion function in the expres- 
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sion of the LRT fixes, in a sense, the dynamics of our problem. Therefore, 
an important part of the dynamic information is contained in this state- 
dependent diffusion coefficient. With this in mind, it is quite remarkable 
that for systems which do not obbey a Fokker-Planck equation, there 
exists a function playing the role of an effective diffusion function generat- 
ing all the LRTs and that we can easily interpret in a Fokker-Planck 
scenario. The fact that the steady-state dynamics can be reduced exactly, at 
least as far as LRTs are concerned, to so simple a Markovian description 
is a remarkable point which is not guaranteed at all. For  instance, such a 
dynamic effective diffusion does not exist for an Ornstein-Uhlenbeck noise 
(OUN) problem, even to first order in r ('8) 

The knowledge of the dynamic effective diffusion can given a valuable 
understanding of the specific features of the steady-state dynamics 
associated with each particular noise, but the explicit dependence on v(x), 
g(x), and the parameters of the noise is not radically different from that of 
the static effective diffusion. This last quantity, also referred to in the 
preceding section, would be defined through a formal analogy between the 
steady-state probability density Pst(X) and that corresponding to the G W N  
case, as the quantity appearing instead of Dg2(x). In fact, one usually can 
write the Pst(X) as 

N exp (~- v(x') dx' (3.1) 
Pst(x) =g (x )  ~b(x) J Dg2(x ') O(x') 

which defines the static effective diffusion as D~cr(x ) = DgZ(x)~(x). In our 
results, the dynamic effective diffusion has turned out to be a multiple of 
the static one, so that we can write D~f(x)= Dg2(x)~b(x)~p(x). However, 
the theoretical interest of the dynamic effective diffusion is that it has been 
defined from dynamic arguments. In the sense we commented on for 
GWN, it "fixes" the dynamics of an effective Markovian process which not 
only contains the exact statics [Pst(X)], but also some exact dynamical 
information (all the exact LRTs). So the existence of a dynamic effective 
diffusion relates us immediately to an optimal Fokker-Planck approxima- 
tion of the problem that would be defined by the Fokker-Planck operator 

0 
L(x) = - ~xx Iv(x) O(x) + DgZ(x) (~(x) O'(x)] 

+ O ~x g(x) ~x g(x) (~(x) O(x) (3.2) 

The reduction to this framework can also be useful for practical 
purposes of calculation or simulation. 
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3.2. Autocorre la t ion  of  the Dri f t  

Here we will consider a particular choice o f f ( x )  for which the general 
solution of the LRT takes a very simple form with arbitrary v(x) and g(x) 
and for any noise among those studied in Sections 3.1-3.3. 

Let us consider first the Gaussian white noise case. From the form of 
the general solutions of the LRT it is clear that the choice f ( x )  = v(x)/g(x) 
makes the integral (2.17) immediate, so that it reduces to an average form 

- 1  
Tv/g = ( g ( v / g ) , ) s  t (3.3) 

The quantity v/g has a simple interpretation. It is nothing but the drift 
of a Langevin equation related to (t.1) by a change of variable x and for 
which the noise would appear additively. 

The remarkable feature of LRTs we have just pointed out for GWN 
is not restricted to this particular case. From the knowledge of the explicit 
form of the Pst(x) in each case it is easy to show that in the cases studied 
in this paper the LRT for the quantity v/g reduces always to an average 
form. In fact, in the notation of Section 3.1 for the static and dynamic effec- 
tive diffusion functions, DgZ(x) (~(x) and DgZ(x) ~b(x) ~(x), respectively, the 
LRT for the quantity rig reads 

T,/g = - (~bg(v/g)')st - ((v/g) 2 )st (3.4) 

taking into account that F = DgPst and C(0) = ((v/g) z )st = -D(Og(v/g) '  )st. 
Equation (3.4) is exact for WSN and DMN with the correspondences of 
Table I. For the OUN case it is only approximate. Actually, a dynamic 
effective diffusion in the sense discussed in Section 3.1 does not exist in this 
case, (18) but we can write 

(r + ~ + 0 ( ~  2) (3.5) 
Tv/g= (o~g(v/g)') st  

with ~b(x) given by Table I. (25) 
We include these expressions for their practical usefulness, for 

instance, in approximate calculations like those involved in perturbative 
expansions on D of the LRTs (see Section 4). 

A simple and interesting application of these considerations is the class 
of multiplicative noise models of the form 

1 
Yc= [x - -xn+xr l ( t ) ] ;  n>~2 (3.6) 

n- -1  
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Table  I 

~(x) O(x) 

Dichotomous Markov noise 1 (v + •g)(v + zVg) 
(DMN) (v + Ag)(v + a'g) 
(D = -aA"r) AA'g2 zJA~g2 q- �89 q- .,d') gv 

Symmetric Dichotomous Markov noise (SDMN) z) .g (/))2 g __~(g) 
1 - =  1 ~ v 2 

(D = z?~) 

Po~ssonian white shot noise 
(WSN) 1 w 0 v 1 - (wo/D)v/g 
(D = 2w 2) D g 1 - �89 v/g 

Ornstein-Uhlenbeck noise ( g ) , +  
(OUN) 1 + zg O(r 2) 

which are related to the Verhulst model ( n = 2 )  through the change 
x-*  x 1/('- 1). We know, from the general condition (v/g)st  = 0, that for this 
model ( x ) s t  = 1 (actually this is valid for any noise with zero mean), so the 
autocorrelation of v(x)/g(x) = 1 - x is precisely the usual correlation func- 
tion [ f ( x ) = x -  (X)st] .  For  GWN it turns out that T =  Trig= 1/(X)st = 1 
(independent of D). This is a well-known result, ~ which is reobtained 
here in a very simple way. Similarly, for each n in (3.6) there is a mode 
x n- 1 whose autocorrelation has a constant LRT which is exactly T =  1. 

As a direct consequence of (3.4), the LRT of the correlation function 
for the Verhulst model [ f ( x ) = x - 1 ]  with SDMN (26) reduces to the 
calculation of mere steady-state moments. The exact result then reads 

A 2"c 

T ( x 2 ) s t _  1 (3.7) 

where the second moment is exactly known in terms of hypergeometric 
functions and reads 

A + A 2 -  1 F(B, C; B +  1 ; k ) .  

( x Z ) ~ t = 4 A + 2 A _ I F ( B , C ; B _ I ; k ) ,  A > l  (3.8a) 

,2 F ( - A  - 1, C; - A ;  1/k) 
( X 2 ) s t = ( A + l )  F-O-- A~ C. - - -~ ;  i / -~  ' A < I  (3.8b) 

with 

A A A A + I  
A - A 2 _ I ;  B =  2 ( A _  1 ~ - - ~  + 1; C -  2(A + 1 - - - - - ~ ;  k =  2A (3.8c) 
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T o  first order in z, the same model but with O U N  gives rise to 

T= 1 + z(X2)o + O(z 2) (3.9) 

where the ( - - . )o  (GWN average) is given by 

(X ' )o=D "r(1/D+n)" (X 2 )o =  I + D  (3.10) 
r ( 1 / n )  ' 

In both (3.7) and (3.9) it is clear that the color of the noise breaks 
down the property of independence of the LRT on the noise intensity D. 

For  completeness we also write the LRT of the Verhulst model with 
WSN, which reads 

T =  2w2 (3.11) 
(X2)st- 1 

4. A S Y M P T O T I C  RESULTS.  S O M E  E X A M P L E S  

Here we briefly discuss some illustrative examples of asymptotic laws 
obtained for LRTs in different prototype situations, which are not intended 
to be exhaustive. 

As a representative model we will consider that defined by (1.1) with 

v(x)=-(c~x+flx2+?x3); 7 > 0 ;  g(x) = 1 (4.1) 

We will call the case ~ > 0 ,  fl2/7 < 4  the monostabte model. The 
bistable model will be defined by e < 0, fl = 0. The case e = fl = 0 is the so- 
called marginally stable model. Unless we indicate the contrary, in the 
following we will only consider the LRT associated with the autocorrela- 
tion of the variable x I f ( x ) =  x].  

For  Gaussian white noise (GWN), a perturbative expansion on the 
intensity of the noise for the monostable model leads to 

1 1 
T =  -c~ + D ~ (5fl 2 -- 3~7) + O(D 2) (4.2) 

This perturbative approach fails when one approaches the marginal 
point (e2/7 ,~ D). For  the marginal case e = fl = 0 the LRT can be evaluated 
exactly and reads 

T= (~D)-*/:6 (4.3) 
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where 6 = 0.7212 .... Notice that, in contrast to what the linear analysis of 
(4.2) suggests, for a finite intensity of the noise the LRT is always finite and 
only get a divergence in the deterministic limit D ~ 0 (asymptotic critical 
slowing down(27)). For  multiplicative noise models, instead, the LRT may 
present a divergence even for a finite intensity of noise. (19) 

For  the bistable model in the same limit of weak noise, a steepest 
descent analysis of the general result gives 

T~  ~ e ~2/4"~D (4.4) 

This coincides with the inverse of the first nonvanishing eigenvalue of the 
problem in the same approximation, which dominates the passage through 
the barrier. Other subdominant time scales, such as that of the relaxation 
inside either of two wells, can be obtained by studying the autocorrelation 
of x 2 (see a discussion of this point in ref. 11). 

For  the case of white shot noise (WSN), a simple law can be obtained 
in the monostable case following a similar perturbative analysis now on 
the parameter Wo. To first order, we get a correction associated with the 
intrinsic asymmetry of WSN which reads 

T =  1 _  Wo -~ + O(w 2) (4.5) 

If the noise is close to the Gaussian limit (wo and D = 2w 2 of comparable 
size), then we can write 

_ 5p  2 - 3 ~  + O(w~ ,  w o D )  

= TOwN(D)-  Wo ~ +  O(w 2, woD) (4.6) 
0~ 2 

where O(w 2) refers to non-Gaussian contributions. 
For  the case of colored noises it is also possible to obtain simple laws 

for the monostable model by means of perturbative expansions on the 
noise intensity D of the form 

T= To(z) + DT~(r) + D2T2(r) + ... (4.7) 

The part To(r) is common for symmetric dichotomous noise (SDMN) and 
Ornstein-Uhlenbeck noise (OUN) and reads exactly (28) 

1 
To(v) = - + r (4.8) 

(g 

822/56/5-6-24 
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The contribution Tl(r) instead is model dependent and reads, respec- 
tively, for SDMN and OUN 

TsD(z) = c~ 3 [_c~ 7 5 + er \ 5c~TJJ + O("E 2) (4.9a) 

T~ = ~-3 L~7-  ~ + c~r +O(z  2 ) (4.9b) 

From this result we can conclude, for instance, that for the monostable 
model 

TSD-T~ D2~)>O (4.10, 

Finally, the steepest descent analysis of the LRT for OUN in bistable 
models leads also to a dependence of the type 

T~ ct~ e~2/4Dv l + ~ V +  "" (4.11) 

The coefficient 3/2 is the same appearing in the eigenvalue and mean first 
passage time analysis. (29) More details of all these calculations can be found 
in ref. 30. 

5. C O N C L U D I N G  R E M A R K S  

We have presented the exact solution of the general LRT problem for 
single-variable processes driven by dichotomous Markov noise and 
Poissonian white shot noise. We have emphasized the interest of the LRT 
in general as a characteristic time scale of the steady-state dynamics. The 
relative facility of getting explicit results for this quantity even for non- 
Markovian processes is of practical interest in order to check different 
approximations of the correlation functions and even to define new 
o n e s .  (1~ We have also compared our results with previous ones for 
Gaussian noises, and have given some examples of how to extract physical 
information in different prototype situations. Finally, from the formal 
properties of the general solutions of LRTs we have obtained some practi- 
cal and theoretical conclusions. Among them we can stress the exact solu- 
tion of some multiplicative-noise models and particularly the discussion 
about the characterization of the steady-state dynamics by means of an 
effective diffusion description in a Fokker-Planck scenario containing exact 
statics and exact LRTs. An extension of these technique to the study of 
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transient dynamics has been done in the case of Gaussian noises in ref. 15 
(white noise) and ref. 16 (colored noise) and is also possible for the non- 
Gaussian noises considered in this paper. (3~ 

A P P E N D I X .  W H I T E  S H O T  NOISE .  G E N E R A L . S O L U T I O N  

In order apply the method of Section 2.1, the evolution operator of 
Eq. (2.37) can be written in a more convenient way as 

L(x)=  -~xx [v (x ) -Xw~ 1 -Wo-~-s ) - 1 (A.1) 

so that if we multiply (by the left) both members of (2.7) by the operator 
1 -  Wo(O/~x)g(x), Eq. (2.10) with (A.1) reduces to 

{E 1 1 } -- WO-~x g(x) -~x [v(x)-  2w o g(x)] + 2Wo ~x g(x) po(x) 

= 1-Wo~xg(X) [ f2(x)-( f2)s t]est(x)  (A.2) 

'This is the equation we have to solve now. A formal integration in 
both members leads to 

~ ,lw0 g(x)] } po(x) v(x)+ g ( x )  Ev(x)- WO 

= 1-Wo g(x') [f2(x')-<f2>~]Pst(x')dx' 

=- F2(x)+ Wog(X) F;(x) (A.3) 

The homogeneous part of (A.3) is the equation satisfied by P~t(x); thus, the 
general solution of (A.3) is 

x 

po(x) = KPst(x) + Pst(X) fa Wo g ( x ~ - ~ " i ~ x - ~ ]  )~st(X') dx' (A.4) 

If we write the correlation function C12(S ) in the equivalent form 

b 

C12(s) =fa dx [ f ~ ( x ) -  <fl>~t] eL(x)S[fz(X)-- <f2>~t] Pst(x) (A.5) 
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then Eq. (2.14) for n = 0 reads 

b 
-,2r~~ = fo [A(x )  - <A >s~] po(X) dx (A.6) 

so that the term proportional to K will not contribute. 
Hence the LRT T12 will be given by (2.13) with the second term of the 

rhs of (A.4) substituted into (A.6). In the most important case f l  -=f2 =f ,  
an integration by parts in (A.6) with (A.4) gives 

(A.7) 
b b F2(x)- wog(x) F(x) F'(x) 

After another integration by parts in the second term of the integrand and 
some rearranging, Eq. (A,7) can be written as 

b F2(x) r TC(O) Ja [2wog(x)---v(-x)] Pst(x) 

( 1 t-} d ln{[v(x)-,Lwog(x)]Pst(x)})dx (A.8) 
x Uoog(x) Yx 

Now, using the explicit form of the Pst(x), 

_ g  v(x') 
1 exp dx' (A.9) 

Pst(x) oc v(x)-'LWog(X) J wog(X,)[v(x,)_2wog(X)] 

Eq. (A.8) reduces to 

1 if F2(x) I 1 v(x) ] 
T=-C-~) wog(xl[2wog--~)~_v(xl] Pst(X ) l +~,Lwog-(-~))-__v(x) dx 

(A.IO) 
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